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Abstract: Here we define ‘addition’ and ‘multiplication’ on the set M(F) of all matrices over a field F as an
extension of traditional matrix addition and multiplication respectively and study about the algebraic structure
(M(F),+,.).

Again, since a matrix can be thought as a linear transformation from a vector space to a vector space over a given
field F, we shall have a kind of extension of all linear spaces of linear transformations over the field F.
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NOTATIONS: (i) M,,,«,, (F) denotes the set of all m X n matrices over a given field F, for some positive integers m, n.
(il) Apxn € M(F) denotes A, isan m X n matrix in M(F), for some positive integers m, n.

(iii) M,,(F) denotes the set of all n x n matrices over a given field F.

(iv) M, (F) is the set of all matrices in M (F) each having n columns, for some given positive integer n.

(V) M,y (F) is the set of all matrices in M (F) each having n rows, for some given positive integer n.

(Vi) O, xn denotes the m X n matrix in M(F), of which all the elements are zero.

(Vii) If Appyyn = (aii)mxn € M(F) and p, g are positive integers such that p <m, q <n , then Ay, = (aij)pxq .

1. INTRODUCTION

In traditional matrix algebra, it is clear that ‘addition’ on M,,,,(F) and ‘addition’ on M,,(F) are not same binary
operations, provided(m,n) # (p, q).

Also traditional matrix multiplication is a mapping from Mp,;(F) X M, (F) to M(F) so that matrix multiplication is not a
binary operation on a set of matrices. Also, for different values of n, we shall get different matrix multiplications.
Therefore the statement “matrix multiplication is associative” is not meaningful.

Observing it we get motivation to extend matrix addition and multiplication as binary operations on the set M(F) and
study about the algebraic structure (M (F), +,.) following [1], [2], [3], [4], [5], [6], [7], [8]. And we get an extension of
all linear spaces of linear transformations over the field F.

To define matrix addition in M(F), firstly we embed the given matrices into matrices of suitable higher order, and then
add.
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2. MAIN RESULTS
> Extension of Matrix Algebra :
Definition (2.1) Define ‘addition’ of matrices in M(F) by forall A4,,,, = (aij)mxn » Bpxg = (bij)pxq € M(F),
Apmxn + Bpxg = (Cij)rxs , where r = max{m, p} , s = max{n,q}and for=12,...,r ; j=12,...,5, ¢;j =aj; + b,

aj, if 1<si<m, 1<j<n
0 , otherwise

b":{bw’ if 1sisp, 1<j=q o ._1, ..
K 0 , otherwise ' 2, e, T3

where a;; ={ ,fori=12,....,r; j=1.2,...,s and

j=12,...,s.

Example (2.1) Consider the real matrices

9 1
1 2 3 4 2 8
A=<5678).B=73
9 0 -1 3/su 4 6
_145><2
1 2 3 4 /9100\ /10334\
5 6 7 8 2 8 00 7 14 7 8
Then A+B=|9 o -1 3| +| 73 0o | =|l16 3 -1 3]
00 00 \4600/ \4600/
o0 00/, \-1 400/, ., \-14 00,

Theorem (2.1) (M(F),+) is a commutative monoid.

Proof : LetA = (a;) ., B= (bif)qu' € = (cij),,, € M(F) be arbitrary.

Then A+ B = (a{]) + (b{j)ulxvl = (a:] + bi’j)ulxvl = (dij)ulxvl )

Uq XV
where u; = max{m,p},v; = max{n, q} and

a{'_{al-j, if 1<i<m, 1<j<n
ij =

yfori=1.2,....,uy; j=12,...,vy,
0, otherwise l tiJ V1

b, if 1<i<p, 1<j< ,
b{f={” v P T2 for i=12,.

.ou ;3 j=12,...,v; and
0 , otherwise 1 1

dij = a{] + bl,]' for i = 1,2,....,u1 5 ] = 1,2,....,171. .................. (1)

Therefore, fori = 1,2, ....,u; ; j =12,...,v,,d;j = aj; + bj; = bj; + aj;
(since F is a field and (a{j)ulxv1 , (b{j)ulxvl € M(F) ).

But (blI] + aL,'j)ulxvl = B + A

Therefore ‘addition’ is commutative .

Again B+ C = (bl’]’ s + (Ci,j)uzxvz = (bl’J' + Ci’j)uzxvz = (ei}-)uzxvz , Where u, = max{p,r}, v, = max{q, s} and

bijj, if 1<i<p, 1<j<q . ,
bl ={ Y ,fori=1,2,..., ; J=1,2,....,0,,
Y 0, otherwise l Y23 1 v2

i, Iif 11 1<j<
' ={CU' Jlsisr, 1)< o019 uy; j=12...,v,and

cl: .
Y 0 , otherwise

r

i for i=12,....,uy; J=12,...,05. . 2)

N
el‘j = bl] +c
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Now (A +B) +C = (d};) _ +(c} = (di; + ¢

J/uzxvg

= (fij)u3><v3 , where

U3zXV3 U3z Xv3

uz = max{u,, r} = max{max{m, p},r} = max{m,p,r} = uy, u, ,
vy = max{v,, s} = max{max{n, q}, s} = max{n, q,s} = v;,v, and

_(dy, if 1<i<u, 1<j<w

dc._{ Cfor i=12 ity 3 j=1,2 0,05,
Y 0 , otherwise : Us i J Vs

C,,z{cij, if 1<i<r, 1<j<s

” ,fori=12,...,u;; j=1,2,...,v3 and
Y 0 , otherwise 35 3

fl-jzd{j+ci’]’- ,for i=12,..,u3 ;5 J=12,...,V3. e 3)

Now order of the matrix A+ (B+C) is max{m,u,} X max{n,v,} and max{m,u,} = max{m, max{p,r}} =
max{m,p,r} = uz , max{n, v,} = max{n, max{q, s}} = max{n, q,s} = vs .

Therefore A+ (B + () is a matrix of order u; X vs.

Now, +(B + C) = (a{} s + (ei’j)u3xv3 = (a{} + ei’f)ung3 = (gif)u3><v3 , Where

G, if1<ism, 1<j< , ,
" {a” flsism JEM gor i=1,2 s =120, s,

Y 0, otherwise

o! z{e”, if 1<i<u,, 1<j<v

i Z for i=12,..,u3; j=12,...,v; and

0 , otherwise

!

gij = af} +e; , fori=12,...u3; j=12,...,v3. 4

Now, for =1,2,....,u3 ; j=12,...,v3,

dii+c¢;, forl<i<u,, 1<j<vw
fy=dy+eg=1"""""", i 1
Cij otherwise
a{1+b{]+C{],,fOTlSlSul,lsjsvl 5
= o, otherwise e (5)
andfori=12,...,u; ; j=12,...,v3,
. , aji+e;, for1<i<u,, 1<j<v,
gij =aijjte;= " :
aij otherwise
a:;+bl’]'+cl'],fOTlSlSu2,1S]Sv2 6
= o, otherwise (6)
Now, (a)), . = (o ™" o0 ) )
I uq xvq O(ul—m)xn O(ul—m)x(vl—n)
Amxn Omx(vl—n) Omx(v3—v1)
(a{; = O(ul—m)xn 0(u1—m)><(v1—n) 0(u1—m)><(v3—v1) ................ )
U3XV3
Ouzg-upxn  Ouz—upx@i—n)  Ouz—up)x(vs-vy)
(1) _ ( Bpxq Opx(v1-a) ) )
Y9upwr \ Oy —pyxg  Ous-pyx@i-)
B. 0 _
(bl =( pxa Px(2=a) ) ............................... (10)
w2z \Ow,—pyxq  Ouz—p)x(vs—q)
() =, x9N (11)
Y uyxv, O(uz—r)xs O(uz—r)x(vz—s)
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C‘rxs 0r><(v2 -5) 0r><(v3—v2)
(Cl,j’ Usxvs = O(uz—‘r)xs 0(u2—T)><(172—S) O(uz—r)x(v3—v2) ................ (12)
Ous-uxs  Oug—upxwz-s)  Otuz—uz)x(ws—v2)

(dl{j)u3><v3 = ( (dij)u1><171 Oulx(v3—v1) )

Otug-upyxvy  Otug—uy)x(vs-vy)

( Amxn Omx(vl—n) >+< Bpxq Opx(vl—q) ) 0
= O(ul—m)xn O(ul—m)x(vl—n) O(ul—p)xq O(ul—p)x(vl—q) uiXs=v) ) (13)
Ouz-uy)xv; Otuz-ur)x(ws-v1)
and, (ef;) =<(eij)uzva Ouzx(vs-vy) )
Y uzxws 0(u3—u2)xv2 0(“3‘“2)X(V3—Vz)
( Bpxq Opx(vz—q) >+( Crxs Orx(vz—s) ) 0
= O(HZ—D)XQ 0(u2—p)><(v2—q) O(uz—r)xs O(uz—r)x(vz—s) upx(vs=vz) -\ (14)
0(u3—u2)><v2 0(”3—uz)><(173—172)

Observing from (1) to (14) itis clear that for 1 < i < min{m,p,r} , 1 <j < min{n,q,s}, fij = a;; + b;; + ¢;j; = g;;
and for other admissible values of iand j, f;; = either a;; + b;; or b;; + ¢;; or a;; + ¢;j or a;; or b;j or ¢;j or 0 and
gij = either a;; + b;; or b;j + ¢;; or a;; + ¢;5 or a;j or bj or ¢;jor 0.

And, for these other admissible values of iand j, f;; = a;; + b;; iff g;; = a;; + by, fij = by + ¢ iff g;; = bj; +
Cij»

fij = aij + ¢ iff gi; = a;; + ¢, ete.

Therefore ‘addition’ is associative.

We see that 0;,; = (0);,; € M(F) and A + 0,5, = (aif)an +(0)11 = (aii)an = A. ( by definition(2.1) ).

Hence 0,4, is the additive identity in M (F). Hence the result.

Note (2.1) Clearly ‘addition’ on M (F) is an extension of ‘addition’ on M,,,,,(F), ¥V m,n € N.

We see that (M (F), +) is a commutative monoid with additive identity 0,,,. Now for an

A= (aij)mxn € M(F) with (m,n) # (1,1), there exists no matrix B in M(F) such that A + B = 0,,,. Hence (M (F),
+) is not a group.

Consider M,(F). Then (M,(F), +) is a commutative group with identity 0,4,. Clearly ‘addition’ on M(F) is an
extension of the ‘addition” on M, (F) and so (M, (F), +) is a subgroup of the monoid (M (F), +) and we see that both
have the same identity elements.

Consider M, (F) with with (m,n) # (1,1). We know that (M,,«,(F), +) is a commutative group. Since ‘addition’
on M(F) is an extension of the ‘addition” on M,y (F), SO (M, (F), +) is a subgroup of the monoid (M (F), +). Now
Opmxn 1S the identity in the group (M,,,x (F), +) and Opysn # O1x1 -

Definition (2.2) For m,n € N, we define I,,,,,, as

. 1, ifi=j
Lysn = (6ij)m><n ,where for=1,2,..,m; j=1,2,...,n, §;= {0 i]]cfi ¢]j'
Definition (2.3) Define ‘multiplication’ of matrices in M (F) by forall A = (aif)mxn , B= (bij)pxq € M(F),

AB = (Cij)qu y where for i = 1, 2, e, M ] = 1, 2, e q, Cij = zl;r;{n‘p} aikbkj.
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Example (2.2) Consider the real matrices

1 2 3 4
A=<5 6 7 8) , B=|
3x4

9 0 -1 3

=B NN O

|
)

5x2

1
8
3
6
4
9
2
7
4

o W -

1 2 3 4
Then A+B=<5 6 7 8) +
3X4

50 50
=(138 122
9 0 -1 3 86 24 /i

4X2
Note (2.2) Clearly matrix multiplication is not commutative.
Theorem (2.2) (M(F), .) isanon-commutative semi-group.

Proof : LetA = (a;) ., B= (bif)qu' € =(cij),,, € M(F) be arbitrary.

Then = (di]')qu f BC = (e”)pXS y Where

for = 1,2, (B ] = 1,2, e q, dU = kmiri{n‘p}aikbkj et (1)
andfori=12,...,p; j=12..,5 €; =Y bucrj - oo ©)

Therefore (AB)C = (f;;), . and A(BC) = (gy;), . where

for=12..,m; j=12..5 fj=Sm @ duce; . e 3)
andfori=12,....m; j=12...,5 gj=Yr™ ape . oo, @)

From (3), we get

fori = 1,2, e, M ] = 1,2, ey, S, f’-] = km;r;_{q‘r}(du = ?lzi;l{n‘p} aitbtk)ckj ( by (l) )
= ?:il{n'p} ait( ;(n:lr;{q,r} btkckj)
= 2" ayey (by(2))
=g;; (by(4)).

Therefore ‘multiplication’ is associative.

From Note (2.2), it is clear that ‘multiplication’ is non-commutative .

Hence the result.

L
Note (2.3) Letm,n € Nand A = (ai]-)mxn € M(F) be arbitrary. Let Iy, = ( "

B ) , where B,.,, € M(F) is arbitrary
pxn

and p € N is arbitrary and let 15(™® = (I, B,,x,) , where B, € M(F) is arbitrary and q € N is arbitrary.
Then it is clear that A. Ip(, .y = Aand 150D A = A ;butIpn). A # A & A 15D % A in general.
Again, I,.,A=A=A.I, But I,, A+ A&A.I, # A, if m #n.

If there exists B € M(F) such that A.B = B.A = A, then B must be a matrix of order m X n and the elements of B
depends on the elements of A. Thus order of B depends on order of A and the elements of B depends on the elements of A.

Again it is obvious that I, xnAmxp = Amxp if f n 2 m and A,unlnxn = Apxn iff m = n ; but
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Anxp

InxnAmxp = ( ) # Apxp,in general, and Iy Ay, = Anxp F Amxp ifn<m

O(m—n)XP
AlSO, Apxnlmxn = Apxm  Opxn-m)) # Apxn ,in general,and Apxnly = Apsm # Apxn if m <.
Now it can be easily proved that for given positive integers m, n, for all A,,,., € M(F),

Amxnlmxn = ImxnAmxn = Amxn iff m=n.

Hence there exists no matrix B in M(F) suchthat.C = C.B = C , forall C € M(F) . Hence (M(F),.) is not a monoid.

Theorem (2.3) Matrix multiplication is distributive over matrix addition.

Proof : LetA = (a;) , B= (bii)pxq' C = (cij),,, € M(F) be arbitrary.

Then B+C=(bj) +(cij),,, = bi+c)  =(dy),,, whereu=max{p,r}, v =max{g,s}and

uxv

bii, if 1<i<p, 1<j<q . .
bl ={ ij RO i = 1,2 e 3 = L2 s Ve, 1
Y 0, otherwise ' uiJ v M)
, Cl],lflﬁlST,lﬁjﬁs f R .
= yfor i=12,..,u; J=1,2, 00,0 o 2) and
€ij { 0, otherwise ' wilJ v @)
dij=bjj+cij, for i=12,...,u; J=12,0.,V . 3)

Therefore A.(B +C) = (e;;) ., where

fori=12,...m; j=1.2,...,v

min{n,u} min{n,u} min{n,u} min{n,u}
ei]' = Z aikdk]- = Z aik(b,'(j +C”U) = Z aikb,'(j + Z aikC]’(j (4)
k=1 k=1 k=1 k=1
Also A.B = (fl-]-)qu ,wherefor i =12,....m; j=12,...,q
min{n,p}
fi = Z by e et e (5)
k=1

and A.C = (gij)mxs,where for i=12,...m; j=12,...,5s

min{n,r}

9ij = Z Ak Cj VPRI (o) |

k=1

Therefore (AB) + (AC) = (fij)qu + (gif)mxs = (hij)mxv (since v = max{q, s} ),

where for i=12,....m; j=12,...,v, hi=fi+gij ™),

fij, if 1sism 1<j<q_

where for i =1,2,.....m; j=12,...,v, fi} ={ d

0, otherwise
_{gi,-, if 1<i<m, 1<j<s

I
9ij 0, otherwise

min{n,p} . . ,
e, fori=12,...,m;j =12,...,v, f] ={ k=1 Gubyy o lsism o ls<js<q ®)

0, otherwise

min{n,r} . . .
and g£j={ k=t Gl o S lsismolsjss )

0, otherwise

(by (5) & (6))
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Therefore, for i =1,2,.....m ; j=1.2,...,v,

fi = kmzi’;{"’“} QigeDij oo (10)  (by (1) and (8), since min{n, p} < min{n, u})
and gf; = Tpen ™™ i e (11)  (by(2) and (9), since min{n, 7} < min{n, u}).

From (4), (7), (10) and (11), it is clear that (eii)mxu = (h”)mxu )

i.e, A(B+C)=(4B) + (AC).

Therefore matrix multiplication is distributive over matrix addition from left.
Again (B + C0)A = (“if)m ,Where for i =1,2,...,u; j=1.2,...,n,

min{v,m} min{v,m} min{v,m} min{v,m}
(l’i]' = Z dikak]' = Z (bl’k + Ci,k)akj = Z bi’kakj + Z Ci’kakj fre ree res vas wee wer s eas (12)
k=1 k=1 k=1 k=1

Also BA = (B;)) L owhere for i=12,...,p; j=12,...,n

pX
min{q,m}
k=1
and CA=(yy)_ , where for i=12,...r; j=12..n
min{s,m}
Yij = Z Cik O j VPP URTRRRRY @ £ |
k=1

Therefore (BA) + (CA) = (,Bij)pxn + (i), = (6:),,, (since, u=max{p,7} ),
wherefor i =1.2,....,u; j=12,...,0, 6;; =Bt Vij «ooviiiiriii (15),

Bij, ifl1<i<p; 1<j<n

and
0, otherwise

wherefor i =1.2,...,u; j=12,...,n, B ={
,_{)/ij.ifISiST;lﬁan
Vi = 0, otherwise

min{q,m} . . . .
i_e_,fori=1’2’____’u;j=1,2,____’71_"8{],={Zk:1 byay,if lsi<p; 1<jsn (16)
0, otherwise

min{s,m}

and ylf].:{ k=1 Culj » flsisr;lsjsn (17)
0, otherwise

(by (13) and (14) )
Therefore, for i =1,2,....,u ; j=12,...,n,
Bl = Tt @ e (18) (by (1) and (16), since min{g, m} < min{v, m})
and y;; = ;(nzi[;{”'m} ClRQUej weeeeevvnnnneeeeeiiiae (19) (by (2) and (17), since min{s, m} < min{v,m}).
Now from (12), (15), (18), (19), it is clear that (aij)uxn = (Gij)uxn,
i.e.,(B+C)A = (BA)+ (CA) .
Therefore matrix multiplication is distributive over matrix addition from right.

This completes the proof.
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Definition (2.4) A matrix A,,«, € M(F) is said to be non-zero if at least one element of A,,x, IS
non-zero in F .

Definition (2.5) Let R be a non-empty set on which two binary operations ‘addition” and ‘multiplication’ are defined.
Then the algebraic structure (R, +, .) is said to be a weak hemi-ring if

(i) (R, +) is a commutative monoid,
(i) (R, .) is a semi-group,
(iii) ‘Multiplication’ is distributive over ‘addition’,
but a.0 = 0.a # 0, in general, for a € R, where 0 is the additive identity in R.

Note (2.4) From Theorem(2.1), Theorem(2.2), Theorem(2.3) and Definition(2.5) , we observed that (M(F), +, . )isa
weak hemi-ring with zero 0; ;.

Therefore from definition (2.4) , for all m,n € N, with (m,n) # (1,1) , we see that 0,,., € M(F) is neither a zero
element nor a non-zero element in M(F) . But we call 0,,,,, as the (m, n)-zero matrix in M(F).

Note (2.5) We know that (M,,.,(F), +) is a commutative group with additive identity O,,., . Again for all
A Bmxn € Miyxn (F), the product A, xnBmxn € Mmxn (F) . Also, in extended matrix algebra, matrix multiplication is
associative and matrix multiplication is distributive over matrix addition. Since these two properties are hereditary
properties, we can say that

(M (F), +, .) isaring with zero 0y, . Clearly this ring has no unity ( as per Note (2.3) ), provided m # n.
> Extension of Linear Spaces of Linear Transformations :

We shall establish that, if we consider a matrix as a linear transformation of vector spaces over a field F, then with
respect to the extended addition ( Definition(2.1) ) of matrices, i.e., linear transformations, and usual scalar multiplication
of matrices, i.e., linear transformations, the set L(F) of all linear transformations from any vector space to any vector
space, i.,e., the set M (F) forms a weak hemi-vector space (as per definition(2.8) ) which is an extension of L(V,W), for
all vector spaces V, W over the field F.

Note (2.6) We know that any two vector spaces over the same field and of same dimension n € N are isomorphic with
respect to given ordered bases, and each is isomorphic to F™.

Again, for,n € N, if m < n then F™ can be thought as a subspace of F", since the map f : F™ — F™", defined by
fci,Cap e vy Cp) = (€1, Cp v cvevny Cy 0, 0, ... ,0),V (c1,¢2) e vnnny Cp) EF™

(n—m zeros are included )
is @ mono-morphism from the vector space F™ to the vector space F™ over the field F.

Definition(2.6) (Addition on L(F) ) Let T, S € L(F) be arbitrary. Then there exists vector spaces M, N, P, Q over the field
FsuchthatT:N — M, S:Q — P are linear transformations. Let m, n, p, q be the dimensions of M, N, P, Q respectively.

Then for any given ordered bases By ={ay, @y, ..., @m}, By = {B1, Bar - Bn} » Bo ={y1.¥2 . ¥p} » Bo =
{6,,8, ....,64} of M, N, P, Q respectively, T, S can be expressed as T = (ai]-)mxn , S = (bif)pxq andM = F™, N = F™,
P =FP, Q =F1.

Define T+ SasT + S: F$ — F",where r = max{m, p}, s = max{n, q}, by

1 1 1
C2 C2 C2

Va=] - € F* f (T + S)(a’) = T(a) + S(a’) = (ai}-)mxn + (bij)pxq EFT ,
Cs sX1 Cs sX1 Cs sX1
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i.e.,T+S = (aij)mxn + (bij)pxq'

Note(2.7) In definition(2.6), since r = max{m,p}, s = max{n,q}, it is clear that r =morp and s =norgq. It is
obvious that, if r =m,s =n, then we consider the ordered bases By, By for co-domain and domain of T + S,
respectively. For other cases, similarly we consider the suitable ordered bases.

Theorem(2.4) (L(F),+) is a commutative monoid, but not a group.
Proof : From definition(2.6), it is clear that L(F) is closed with respect to addition .
LetT,S,R € L(F) be arbitrary. Then there exists vector spaces M, N, P, Q, U,V over the field F such that T: N - M,

S:Q — P, R:V — U are linear transformations. Let m, n, p, g, u, v be the dimensions of M, N, P, Q, U,V respectively.

Then for any given ordered bases By ={ay, @y, ..., @m} By = {B1,Bar -, Bn} » Bp ={y1.v2, ¥} » Bo =
{61,682, ... 64}, By = {uy, gy o, iy}, By = {11, 72, ..., 7,} Of M,N,P,Q, U,V respectively, T, S, R can be expressed as

r= (aij)mxn S= (bij)pxq' R = (Cif)uxv € M(F).

Now T + S = (aij)mxn + (bij)pxq = (bij)pxq + (aij)mxn
(' Since matrix addition is commutative in M (F))
=S+T.

Therefore, ‘addition’ is commutative in L(F).

Again, (T+S)+R = ((aij)mxn + (bif)qu) + (Cij)uxv = (aij)mxn + ((bii)qu + (cij)uxv)
( Since matrix addition is associative in M (F))
=T+ (S+R).
Therefore, ‘addition’ is associative in L(F).
We see that O € L(F), where 0: F - F! given by 0(t) = (0),V t € F1.
Clearly, 0 = O1xq = (0)1x1- NOW, 0 + T = () + (@), = (ay) =
Therefore, O is identity in L(F) with respect to addition.

Now for m,n € N with (m,n) # (1,1), and for any T = (aif)mxn € L(F), itis clear that
VS = (bij)pxq €L(F), T+S=# 0.

Therefore (L(F), +) is a commutative monoid, but not a group.

Definition(2.7)(Scalar Multiplication on L(F)) For all T € L(F), c € F, if T:V - W, where V, W are vector spaces
over F, then the scalar multiplication of T by the scalar ¢ is denoted by cT, is a mapping cT:V — W, defined by Va €V,

(cT)(a) = c(T(a)).

Note(2.8) From definition(2.7), forall T € L(F), ¢ € F, itis clear that, cT € L(F).
Theorem(2.5) Let F be a field. Thenv T,S € L(F),V ¢,d € F,

(i) c(T+S) =(cT) + (cS).

(i) (c + )T = (cT) + (dT).

(iii) ¢(dT) = (cd)T.
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(iv) 1.T =T.
(v)0.T =T.0 # 0, in general.
Proof : Trivial.

Definition(2.8) Let V be a commutative monoid with respect to a binary operation + (called addition of vectors, and
elements of V are called vectors) having additive identity 8, called zero vector ; and F is a field such that there is an
external operation F x V — V, called scalar multiplication. Then V is said to be a weak hemi-vector space over the field F
if

(i) cla+B)=C(ca)+(cB), VcEF,Ya,B eV,
(i) (c+d)a =(ca) + (da),Vc,dEF,Va€eV,
(iii) c(da) = (cd)a,Vc,d EF,Va €V,
(ivVila=aVacelV,

But 0.a (= a.0) may not be equal to 6, YVa € V.

Note(2.9) From Theorem(2.4), Theorem(2.5) and definition(2.8), we can say that L(F) is a weak hemi-vector space over
the field F. Also it is clear that this weak hemi-vector space is an extension of all the linear spaces of linear
transformations over the field F.

» Some Properties of the weak Hemi-ring (M(F), +, .)
Definition (2.9) For a given nonzero matrix A,,x, € M(F) , if there exists a matrix B, € M(F)

such that Ay, xnBpxg = Imxq then By, is called a right inverse of A,,.;,, and if ByygAmxn = Ipyxn, then By, is called a
left inverse of 4,y -

Theorem (2.6) Let m < n . Then for two non-zero matrices A,,xpn » Bmxn € M(F) ,
ApsxnBmxn = Imxn 16 ApmxmBmxm = BmxmAmxm = Imandfor j=m+1,m+ 2,....,n, each

j™ column B; (say ) of By, is zero.

Proof : Let Amx.n = (al-j)mxn , B‘an = (bij)an .

Let ApsnBmxn = Imxn e @)
Then from (1), we have ApsnBmxn = (In + Omx(nom))  cveerveeemeeeineeieeaeenns ()
Since < n, from (2), we get  ApxmBmxm = Im ceeeee 3)
From (3), it is clear that By, is invertible , and hence B,,xmAmxm = Im «-ovovevevenen. 4)

From (3) and (4), we get  A,xmBmxm = BmxmAmxm = Im -

Now m < nimplies that, A,«xnBmxn = AmxmBmxn
= (ApmxmB1, AmxmBz, <oy AmsxmBm» AmxmBms1r o » AmxmBn)
= Imxn (given)
= (In» Omx(n-m)) -

Therefore, ApymBj = Omxy » fOor j=m+1m+2,...,n.

This implies that B; = Oyyq , for j=m+1,m+2,...,n. (since A, isinvertible).

Conversely, let A, xmBmxm = BmxmAmxm = Im coeeee e (5)
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and B; = Opyq, fOr j=m+1m+2,...,n (6)

Now m < n implies that, A,xnBmxn = AmxmBmxn

= (AmxmBmev AmxmBm+1: e AmxmBn)
= (Im » Omxis oee s Omxl)mxn (by (5) and (6))
= Lpxn -

This completes the proof.
Corollary (2.6.a) Letn < m . Then for two non-zero matrices A,,xn » Bmxn € M(F) ,

ApsnBmxn = Imxn 1 ApxnBrxn = BpxnAnxn = Inand for i =n+1,n+2,...,m, each i*" row A; (say ) of A,,xn
is zero.

Proof: Taking transposition both sides of A,,.nBmxn = Imxn and following the same procedure, as in Theorem (2.6), we
have the result .

Corollary (2.6.b) Letm < n . Then for two non-zero matrices A,;,x, » Bmxn € M(F) ,
ApisxnBmxn = BmxnAmxn = Imxn T AmxmBmxm = BmxmAmxm = Ln and

for j=m+1,m+2,...,n,each j* column of 4,,,, and B,,,, are zero.

Proof : Immediately follows from Theorem (2.6) .

Corollary (2.6.c) Letn < m . Then for two non-zero matrices A,,xn » Bmxn € M(F) ,
AmsnBmxn = BmxnAmxn = Imxn 1ff AnsnBnxn = BnsxnAnxn = I and

for i=n+1,n+2,...,m,each i*" row of A,,., and B, are zero.

Proof : Taking transposition in A, xnBruxn = BuxnAnxn = In » immediately follows from
Theorem (2.6) .

Theorem (2.7) Let Apyxpn , Bpxg € M(F) . Then Ay Bpyg = Imxq iff

() AmxnBnxm = Im and Ay (Bt 1) Bz » -oe - Omx(g-m)y » if n<p, m < q;where

B0 peg-my =
for=m+1,m+2,...,q; B isthe j™ column of B, .
()
N Rg+2 : _
(ii) AgxnBnxq = I, and \ ) Bpxq = Otm-qyxq » if n <p, m>q ; where for
Rm (m-q)xn

i=q+1,q+2,...,m; R; isthe i®® row of A, .

(iii) AmxpBpxm = Im ad Apysn (Brs1, Bmaz s ovewe Bq)px(q_m) = Omx(g-my  ifn>p, m<q.
Rg+1
. Rg+2 .
(iv) AgxpBpxq = I; and Bpxqg = Otm-qyxq » if n>p, m>q.
™/ (m-q)xn

Proof:: (i) Letn<p, m<gq.

Firstly, let A,unBpxg = Inxq covvveeevneeeenennnnnn (1)
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Then (1) implies that A,;xyBpxq = Imxq (SinC€ n < p, hence ApunBpxg = AmxnBnxq )

i.6. Amxn(Buxm» Bms1» Bmszs s Bg) =(Im » Omxg-my) (sincem <q).

ie., AmsnBuxm = Im and Amxn(Bm+1 » Bz s, Bq)px(q—m) = Omx(q—m)-

Conversely, let ApxnBaxm = Im a0 Amxn(Bms1, Bmiz s eew Bq)px(q—m) = Opx(g—m)-

Then Apsn(Basm » Bms1» Bmiz v s Bg) = (Im » Omx(gem))

i.8., ApxnBnxq = Imxq - This implies that A, Byxq = Imxq (sSincen <p).
Hence the result.

Similarly we can prove (ii), (iii) and (iv) .

Theorem (2.8) For a given nonzero matrix A, in M(F), if there exists B,  in M(F) such that Ay, xnBpxg = Imxq:
then

m < n, except the case m > n > q.
Proof : Let A, = (aij)mxn and By, = (bif)qu . NOW ApxnBpxg = Imxq 9ives

TP} b = 8y, fOr i = 1,2 e, J = 12 )@ oo (1)

From (1) itis clear that if n > p then all the entries from (p + 1)-th column to the n-th column of 4,,,, are not present in
(1) and if p > n then all the entries from (n + 1)-th row to the p-th row of B,,, are not present in (1).

Therefore to establish the result it is sufficient to prove the proposition when n = p . In this case, (1) becomes
Yk=1Qixbx; = 6;5 , fori=12,.... ,m; j=12,.... S e )

If possible, let m > n. Then from (2), we can say that rank of A,,., is less than or equal to n — 1,
ifg=m>n or m>q>=nandtherank of 4, isq, if m >n >q.

Case (1) : Letg = m > n . Since rank of 4,,,,, is less than or equal to n — 1, the system of linear equations (2) for the
unknown b;;'s will be equivalent to at least

a1 aiz Q1n
/6121 az2 ... aZn\ byy byy . bip
b b21 b22 bZTl
-1 An-1)2 ... Amn-1)n
0 0 e 0 P P wee CETRE
k ) bui by e bna/ xq
0 0 0 mxn
m-th
1 0 0 0 0 0 0
0 1 0 0 0 0 0
I e e .- .- s I
s Ciz 1 Cnuen) 1 =00 0
Cntn1 C@+z ... Cinm-1) C@tvn - 0 0 0)
Cm1 Cm2 Cm(n-1) Con 1 0 0

mxq

which is not possible, since the (m, m) — entry in the Left Hand Side is zero but that in the Right Hand Side is 1.
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Case (I) : Let m > q = n . Since rank of A, is less than or equal to n — 1, the system of linear equations (2) for the
unknown b;;'s will be equivalent to at least

a1 Qa2 Ain
/am @2 ... G \ by; byy e by
by, by, by,
An-1)1 An-1)2 ... Am-1n e
| o 0 o |
K / by bpy b axq
0 0 0 mxn
1 0 0 0 0
0 1 0 0 0
0 0 1 o w0
Cn1 Cn2 e Cn(n-1) 1 e 8
=| Cm+1 Conz  Conm-1) St
o 2 Catn1) Cqn i 1
Clg+n1 Cg+nz 1 Cganm-1) Ca+n.... Ca+da
Cm1 Cm2 Cm(n-1) Cmn o Cmgq mxq

which is not possible, since the (n,n) — entry in the Left Hand Side is zero but that in the Right Hand Side is 1.

Case (1) : Letm >n > q . Since rank of A,,,, is equal to g, the system of linear equations (2) for the unknown b;;'s
will be equivalent to

an @z .. %@y %g o Gn
Az1 Qa2 ... G(q-1) G2q - %2n by b by
by, by, weenr b
21 22 2n
o .
81 82 Aq(q-1) Yqq an
0 0 0 CEER CEER et et
byi bpy e bnq nxq

—
O =

Pim o,
o o

_/

0 0 nn 1 |

Clg+m1  C+nz 1 Cg+i)g
Clg+2)1 Cg+2)2 - Clg+2)q
Cm1 Cm2 Cmq mxq

which may happen, provided all c;; of the Right Hand Side are zero.

This completes the proof.

Theorem (2.9) For a given nonzero matrix By, in M(F), if there exists A,,,,, in M(F) such that
AmxnBpxq = Imxq then g < n, except the case ¢ > n > m.

Proof : In the proof of Theorem(2.8) taking transpose both sides of A, Byxq = Imxq and interchanging the matrices A
and B we shall get the result.
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3. CONCLUSION

Further study may be continued to observe different properties of traditional matrix algebra in the extended matrix

algebra.
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